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The unusual viscoelastic properties of metal sulphonate- (or metal carboxylate-) containing ionomers in 
semidilute solutions with non-polar solvents are reexamined. At fairly low polymer concentration of 
relatively short chains, these ionomer solutions show, besides the extremely high-viscosity behaviour 
studied in an earlier paper, an extensive plateau in the storage modulus and a cusp in the loss modulus, 
both characteristic of a highly entangled polymer melt or concentrated solution. 

We argue that, owing to the temporary crosslinks, the polymer chains are moving inside a network 
made up by the other crosslinked chains and hence undergo one-dimensional diffusional motions 
(reptation). The extensive plateau then arises from the disengagement of the chain from a deformed 
tube, as in the Doi-Edwards theory of melts and concentrationed solutions. We derive expressions for 
the storage and loss moduli which are in qualitative agreement with the experimental curves. 

(Keywords: ionomer solutions; physical links; reversible gels; reptation; stress relaxation; dynamic 
moduli) 

INTRODUCTION 

In an earlier work by the author I we discussed the 
unusually high-voscisity behaviour exhibited by solutions 
of metal sulphonate (and metal carboxylate) ionomers, 
especially in solvents of low polarity. Further experi- 
mental studies 2'a have shown that, at concentrations of 
only 2 to 10 wt~  of relatively short chains, the ionomers 
exhibit viscoelastic properties which are characteristic of 
very high molecular weight polymers in the bulk state or 
in concentrated solutions. For example, a logarithmic 
plot 3 of the storage modulus (G') vs. frequency, for sulpho- 
EPDM of molecular weight M,,-~40 000, exhibit an 
extensive rubbery plateay spanning four decades, at a 
concentration of only 5 wt~  and room temperature. A 
similar plot 3 for the loss modulus (G") shows a peak, 
which is again characteristic of a highly entangled 
polymer melt or concentrated solution. The corre- 
sponding plots for the base (non-sulphonated) polymer, 
under the same conditions, do not show even a hint of the 
plateau for G' or a cusp for G", but a direct transition from 
the flow to the glassy regimes. All these results were 
interpreted 2,a as arising from strong physical associations 
of the ion pairs, effectively crosslinking the different 
polymer chains in the solution and leading to gelation. 
Unlike strong (covalently crosslinked) gels 4, ionomer 
solutions flow over long periods of time, indicating that 
the bonds are not permanent but break easily after a 
certain characteristic lifetime. 

Ionomers are hydrocarbon polymer chains containing 
relatively few metallic groups (usually sulphonated or 
carboxylated) on some of the monomers composing the 

* Present address 

chains. The fraction f of the sulphonated groups along 
the chains may be chemically controlled. Because of the 
attractive nature of the metal sulphonate groups, the 
corresponding monomers associate, crosslinking different 
chains for finite periods of time. The finite lifetime of the 
crosslinks arises from the fluctuations in the relative 
kinetic energy of the two corresponding monomers and is 
related to the escape of a particle in a thermal bath over a 
potential barrier. A rough estimate of this lifetime ~ is 
given by the formula: 5 

1 
~ -  e "/kB~, (1)  

O9 v 

where COv is a characteristic vibrational frequency of two 
bonded monomers, u is the energy of interaction, kB is the 
Boltzmann constant and T is the temperature. 

The present work is concerned with the unusual 
viscoelastic properties of ionomer solutions at relatively 
low concentration of not very high molecular weight 
polymers, as exhibited in the storate and loss moduli, and 
one of the purposes is to give a derivation of both. In our 
calculations we will be inspired on early ideas of reptation 
of a chain inside a permanently crosslinked gel, by de 
Gennes 6, and on the computation of the stress relaxation 
tensor, by Doi and Edwards 7. In the next section we give a 
derivation of the stress relaxation tensor for the ionomer 
system, starting from the corresponding expression for 
rubber elasticity and assuming one-dimensional 
diffusional motions for the primitive paths of the polymer 
chains. The following section will be employed to 
compute the storate and loss moduli and to make a 
logarithmic plot of both moduli vs. frequency, which will 
turn out to be in agreement with experiment. Finally, in 
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the last section, we will discuss the conditions for the 
validity of the assumption of one-dimensional diffusion 
for the polymer chains, which is not trivial for systems 
with the stated conditions of concentration and molecular 
weight. 

T H E STRESS RELAXTION TENSOR 

Let us consider a monodisperse ionomer solution of 
chains of polymerization index N, where a fraction f of 
the monomers are sulphonated. We will constantly 
assume a monomer concentration C above the overlap 
concentration C*, for which the chains start to inter- 
penetrate. This semidilute solution is often described in 
terms of 'blobs'4'8'9: each chain in the solution has a 
certain number of contacts with other chains: a blob is 
that part of the chain between two consecutive contacts. 
Indeed, the overlapped chains form a network of sub- 
chains and contacts, and the mesh size of the network ~ is 
precisely the blob distance. Each chain in this semidilute 
solution is also often described as trapped inside a tube of 
diameter ~ made up by the other chains. The walls of the 
tube correspond to the topological constraints (or non- 
crossability) between different polymer chains. The centre 
line of the tube was called the primitive path of Doi and 
Edwards 7. 

As described before ~, the probability for a chain, picked 
at random at any instant of time, to have 7 crosslinks is 

p(r)= (~)~7(1_ ~).-7, (2) 

where n is the number of contacts per chain and ~ is the 
probability for a contact to be a physical link. The average 
number of crosslinks per chain is then 

~= ~ 7P(7)=n~ .  (3) 
7=0 

We now assume the expression from rubber elasticity 
for the stress relaxation tensorT: 

7+1 ri,(t)r,~(t)\ +P6. ,:oiX'Z,:, / , 
(4) 

In this equation, v is the volume of the system, 6,~ is the 
Kronecker delta, x 7 is the number of chains carrying 7 
crosslinks, r~(t) is a vector joining two consecutive cross- 
links of a polymer chain, 97=N/(7 + 1) is the number of 
monomers in the corresponding subchain*, b the bond 
length and p that part of the hydrostatic pressure not 
contained in the term between brackets. The angular 
brackets indicate an average over orientations of the 
vectors r~(t). Note that we have assumed Gaussian 
statistics for the subchains. 

Expression (4) can be rewritten as 

3CkBT Z P(7) - -  (7~" r~(t)r~a(t)\+p6, (5) 
a,~(t)= U 9~b 2 / ~" 

7=1 \ i = 1  

To calculate the relaxation modulus we will follow the 

*We have assumed that the 7 erosslinks carried by a chain are equally 
spaced along its length. A distribution of subchain lengths can be taken 
into account with more effort, leading to no interesting changes in the 
final result. 

usual procedure 7 of suddenly deforming affinely the 
ionomer system at t = 0, keeping the deformation constant 
and looking at the relaxation of the stress tensor. At times 
smaller than zero, that is, in equilibrium, we define 
ri = r~(t < 0), and r~ is a vector of isotropic direction: 

9 - ~ / = ~ O , , .  (6) 

Let ~ be the tensor describing the deformation. Then, the 
assumption of affine deformation at t = 0 means that the 
isotropic vectors ri transform, immediately after 
deformation, into 

r~ = z" r~. (7) 

Hence, immediately after deformation, the stress tensor 
becomes 

t _ _  ~ "  i ~ r i f l \  e 3CkBT P(7) +po~ 
a~p - N ~=o i= 

Ck~T 
N 

- - -  (~7+ 1)e~ep, -I-pO~a, (8) 

where e,p represents the ctfl component of the strain tensor 
~. In this last expression and from now on, a repeated 
greek index indicates a sum over that index. We note that 
the vectors r~ are stretched (or compressed) beyond the 
equilibrium length g¢/2b and then there is a force tending 
to restore them to equilibrium. Furthermore, the chain is 
now trapped inside a deformed tube, being no longer a 
random walk. If the crosslinks did not break, equation (8) 
would be the final expression for the stress. As the 
crosslinks break and reform, two relaxation processes 
occur. The first one is an equilibrium process inside the 
deformed tube, after which the subunit vectors (now 
called r~) recover the equilibrium length g ~ / 2 b .  L e t  ZR be 
the equilibrium time 6'7 of a free, non-crosslinked chain. 
Then, three cases need to be mentioned. 

(a) r >> "c R. In this case all chain subunits equilibrate 
almost immediately after a crosslink is broken or 
reformed. If we regard the chain made of~7+ 1 subunits as 
a Rouse 1° chain, the equilibration time for the whole 
chain should be1°: 

Zeq ~ Z()7+ 1) 2. 

(b) z < ZR. In this other case, the crosslinks break and 
reform in a time much shorter than that taken by the 
subunits to equilibrate. Hence, the crosslinks are not 
really felt, with the exception of an added increase in the 
friction coefficient. The equilibration time should follow 
the pattern of that of a free Rouse chain 1°, with a 
renormalized friction coefficient (': 

N 2 b 2 (  1 

zeq ~ 6rc2ka T" 

(c) Z~rR. In this last case the crosslinks act as 
constraints on the chain diffusion and at the same time 
increase the friction. One then has a complicated dynamic 
problem whose solution is not attempted here. In any 
case, it will be argued in the discussion section that, in 
order to have one-dimensional diffusion, we need to be in 
the former case (a). According to equation (1), this clearly 
can be achieved by picking an ionomer system with a high 

1470 POLYMER, 1984, Vol 25, October 



Viscoelasticity of ionomer gels: 2. A. E. Gonzdez 

energy of interaction. From now on we will restrict 
ourselves to case (a). 

free of sulphonated monomers. The quantity L?/n’D, was 
called the reptation time (denoted here by T,‘) by de 
Genne@. Hence 

After the first relaxation process has been settled, the 
stress tensor transforms into (18) 

(9) In the case of the ionomers, we found’ that the effective 
reptation time (TJ for a sulphonated chain can be written 

where rr is an anisotropic vector of magnitude g:“b. In 
Appendix A we show that 

(10) 

Hence 

As usua17, the second relaxation process is disengage- 
ment from the deformed tube. At any instant of time 
during this process, the stress tensor reads 

as: 
T, = Toe’ 

r 1 (19) 

where f is given by (3). This formula was proposed to be 
valid provided that we are in a regime in which there are 
not too many crosslinks per chain, and was obtained on 
the assumption that a chain diffuses much faster when it is 
free of crosslinks. These points will be clarified, we hope, in 
the discussion section. 

Using(3),(13),(16),(18)and (19), the stress tensor can be 
put in the final form: 

where P,(d, t) is the probability at time t for a chain to 
have d deformed subunits inside the original tube*, out of 
a total of y + 1. We can recast (12) in the following form: 

THE STORAGE AND LOSS MODULI 

The shear relaxation modulus, G(t), is defined” as the 
ratio of the shear stress relaxation to an aunlied small .- 
shear deformation ~~ at t = 0. In this case, the deformation 
tensor E is”: 

where r 1 co o\ 

d,+,(t)= 1 P,(d, t) .d, (14) 
d=O 

&= 0 1 0 

\ 1 00 1 

(21) 

(15) With this tensor, the quantity between curly brackets in 
(20), to first order in Ed, becomes 

We now make the following plausible assumption: 

d,+,@) Ld(t) -_=_ 

y+l L’ 
(16) 

E,,tEp,, 6 1 __cls-_ - 
%&s 3 3 

(22) 

independent of the number y of crosslinks that the chain 
has. Here Ed(t) is the average portion of the primitive 
length still inside the deformed tube at time t and L is the 
total primitive length. The quantity L&)/L has been 
calculated several times 6,7 For completeness we give a 
derivation in Appendix B,‘based on the concept of the 
range of a one-dimensional random walk. The result for 
the case we are considering here is: 

Hence, the shear relaxation modulus is 

8(y+ l)Ck,T a, 
G(t)= z2N (23) ,= 1 F5 ; @T 

3 3 9 

From this last expression we can compute the dynamic 
storage modulus, G’, and loss modulus, G”, using the well 
known formula” : 

s ‘23 

G'(w) = o G(t) sin wt dt 
0 

and 
wher D, is the curvilinear diffusion coefficient for a chain 

-___ G”(w) = w 21 G(t) cos wt dl. 
* We note that no problem arises due to the fact that part of a subchain s 0 

can be in the original tube and part outside it. We count a subchain as 
part of the original tube when more than half of it is inside. A substitution of (23) in (24) and (25) gives: 

(24) 

(25) 
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G'" , 8(~7+ 1)CkBT 
t o ,  = 

1 12 ] 
× ~ 12 o ) 2 T r  2 

1 = 1 , 3 , 5  . . . .  1= 1 , 3 , 5 , .  ~ " J -  
(26) 

and 

8(7+ 1)Ckar (mT~) 
G"(m) = n2 N 

l =  1 ,3 ,5~ 
.. 14 + co 2 T~ 2" (27) 

These series can be summed in closed form, using a 
lengthy but straightforward procedure I a, with the results: 

and 

sinh -1 
x cosh x/(~r2coTr)+COS ~/(~2a~T~)_J' (28) 

1 
G"(~) = G ° x / ( ~ % Z  ) 

Fsinh x/(~r2coT~)-sin x/(~2coT~)-] 
x [ cosh x/(~r2coT~) +co s x/(~2coT~) j ,  (29) 

where we have defined the elastic plateau modulus of the 
ionomer system as 

G o_ (7+ 1)CkBT (30) 
N 

This result corrects an assumption made earlier 1, which is 
wrong for the system with the stated conditions of 
concentration and molecular weight that we are con- 
sidering here. A logarithmic plot of the dynamic moduli 
(28) and (29) vs. frequency is shown in Figure 1, which 
compares well with the experimental curves a in a 
qualitative sense. A cumbersome fitting procedure was 
avoided. 

DISCUSSION 

It is well known 11 that some dynamic quantities of 
concentrated solutions and melts undergo a transition as 
a function of molecular weight and concentration. The 
zero shear viscosity as a function of molecular weight is an 
example of this: below the transition, the viscosity is 
proportional to the polymerization index N, and above is 
proportional to the 3.4 power of N. It has been argued TM 

that the transition point, called the onset of entangled 
behaviour in polymer solutions, corresponds to the point 
where polymer diffusion becomes restricted to reptation 
alone; that is, the primitive chain is capable of undergoing 
one-dimensional diffusion only. Below the transition 
point the Rouse theory gives a fairly good description of 
the dynamic properties. The transition point Arc for 
undiluted polymers is observed to be of the order of 
300q500 backbone units, depending on the polymer under 
consideration. For diluted polymers the data conform 
more or less to the equationlS: 

Nc(soln) ~ N¢C - 5/4. (31) 

In our case of relatively low concentration of not very high 

I I I I J I I I 

=~ 

O 

g 

0 

I I I I I I I I I 

1,0 

Figure I A double logarithmic plot of the storage modulus (G') 
and the loss modulus (G") vs. frequency, from equations (28) 
and (29) 

molecular weight polymers, we would expect not to be in 
the entangled regime and hence one-dimensional 
diffusion would play a minor role. However, we have 
assumed one-dimensional diffusion for the primitive 
chain in the calculation of the stress tensor. This is the 
question we want to address in this section. 

It seems that the essence of the problem is intimately 
related to the nature and stability of the constraints 
forming the tube. The notion of a tube formed by the 
topological constraints arising from the other molecules 
seems to be a plausible idea, even in semidilute solution 
(not very near C*). V~th fixed constraints the primitive 
chain would have no other choice but to reptate along the 
tube in which it is trapped 6, and numerical simulations 
have confirmed this I 6. However, if the original constraints 
disappear to be replaced by new ones with a different 
topology, before the chain has the opportunity to reptate 
along them, we cannot really talk about one-dimensional 
diffusion. 

In a one-dimensional diffusion process (as well as in 
higher dimensions), there is a characteristic step time and 
step length such that, for times and lengths smaller than 
those, the diffusion law <R2> ,-. t is not obeyed. We would 
like to propose now that, in the case of a free chain, this 
time should be the Rouse or equilibration time along the 
tube, as explained in Figure 2. This is because we cannot 
really say that the chain has been displaced to the right or 
to the left until the primitive path recovers its equilibrium 
length. If z >> Za, as we are considering her, then the time 
that a chain spends free is also greater than ZR as found 
before 1, and this free chain has the capability of under- 
going many steps in its one-dimensional diffusion along 
the tube formed by crosslinked chains (as well as by some 
free ones). In this sense our chain is moving inside fixed 
constraints (herefore reptating) until it gets caught by a 
crosslink and becomes part of the infinite network. Then, 
the primitive path of the chain becomes more or less static, 
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15 Schurz, J. and Hochberger, H. Makromol. Chem. 1966, 96, 141 
16 Richter, D., BaumgS.rtner, A., Binder, K., Ewen, B. and Hayter, J. 

B. Phys. Rev. Lett. 1981,47, 109; Baumg~.rtner, A. and Binder, K. 
J. Chem. Phys. 1981, 75, 2994 

17 de Gennes, P. G. J. Phys. (Paris) 1975, 36, 1199 
18 Feller, W. Ann. Math. Statist. 1951, 22, 427 
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C 

Figure 2 (a) A polymeric chain inside a tube with an 
equil ibrium primitive length equal to L. (b) The same chain after 
a time shorter than the equil ibrium time ;R; the length of the 
primitive path is no longer L. (c) After a time t- R the chain 
recovers its equil ibrium length and finds itself displaced by an 
amount A 

particularly when it has acquired more than one crosslink 
along its length. We acknowledge that when the system is 
very crosslinked, a chain in the infinite network has to 
wait for a time exponentially long to be free of crosslinks ~ ; 
in this case some other processes, like dangling ends 
retracing their steps ~ 7, could occur before it gets free, and 
reptation would not be the only mechanism for the long- 
time stress relaxation. 
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APPENDIX A 

In this appendix we show that, when the first relaxation 
process finishes: 

{ r~r'~ \ - e=,%, (32) 
g~ b2 / = 8,08~0" 

We assume that the r" are vectors of magnitude 9~/2b 
joining successive points on the deformed primitive path. 
Of course, in the real system these vectors do not have to 
start and end at points on the primitive path but anywhere 
inside the tube; so, the better the approximation the 
longer and thinner the tube is. 

Let us start with the end-to-end vector: 

Then 

7+1 
R = ~ r,. (33) 

i=1 

7+1 7'+1 
8" R = Z 8 "r,= Z r'[. (34) 

i=1 i=1 

We observe that we need more than y + 1 vectors to span 
the deformed primitive length. So 

)) )) 
o r  

7+1 ?'+l 

Z e,oea,(r,orj,)= E (r;'rT~)" (35) 
i.j = 1 i,j = 1 

Now, obviously: 

( r,or~, ) = }6,s3o, gTb 2. (36) 

Also, for the physically interesting cases of elongation and 
shear deformation, we have: 

( r~'~ri' ~ } = 6~ s( r'~r' ~ }. (37) 

On substituting (36) and (37) into (35), we get: 

= (V + I)  
y•,b2/ 3(7'+ 1) e'"ea~' (38) 

Putting ~ = fl and summing over the index leads to: 

1 -  ~+1 
3( 7' + 1) e~,e~. (39) 

A substitution of this last equation back into (38) gives the 
desired result. 
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Figure 3 A r a n d o m  w a l k  o f  2 0  s t e p s  w i t h  a range ,  r, e q u a l  t o  7 

APPENDIX B 

In this appendix we want to show that the ratio of the 
average primitive length still inside the deformed tube to 
the total primitive length is given by (17). Therefore it is 
enough to show that: 

Lout(t) 1 8 I ( n2DflEt'~ 
L n2 Z gexp  L2e~ ], (40) 

1 = 1 , 3 , 5  . . . .  

where 

Lout(t ) = L - Ld(t ). (41) 

We know that the primitive path of a free chain is 
performing a one-dimensional random walk while it is 
more or less static when the chain is crosslinked. A 
moment of reflection shows that the portion of the 
primitive length that left the deformed tube is precisely the 
range of the random walk 1 s, r, depicted in Figure 3; hence, 
it is our aim to get the probability distribution for the 
range of a random walk. We begin with a free random 
walker starting at the origin at t=0,  with absorbing 
barriers at Z = - Q  and z=R.  The probability density 
~ot(Z) for the walker to be at Z after a time t satisfies the 
following set of equations: 

8 w , ( z )  _ 0 2 w , ( z )  
c3t O~ 

w~(z)=0 if z = - Q  or R (42) 

w,= o(Z) = 6(z) .  

The solution of this set is given by: 

2 ~ e x p (  Djc212t) 
w'(Z)=R+Q ' = 1  (R+Q) 2 ] 

sinFln( g +Q "]] sin( lnQ ~. 
L \R+QJ] \R+Q] 

(43) 

Then, the probability that, at the time t, the walker has not 
been caught by the barriers at - Q  and R is: 

F(t; Q, R)= f~Q w,(z) d Z 

, (  4 E 7 exp 
/ =  1 , 3 , 5  . . . .  

n2DJ2t )sin( InQ ~. 
(R+Q) 2] \R+QJ 

(44) 

We note that this is also the probability for a random 
walker with no absorbing barriers, starting at the origin at 
t=0,  not to have left the interval ( - Q ,  R) at the time t. If 
we let 

0 8 f(t; Q, R ) - - - - -  F(t; Q, R), (45) OR 8Q 
then the probability density for a random walker to have a 
range between r and r +dr  is: 

6(t,r)= f(t; Q,r-Q)dQ. (46) 

After performing the calculations indicated in (45) and 
(46) we get: 

( nZDJ2t~.f8n2D~12t2 4Dj~ 
6(t,r)=4t=,,3,, ~ .... exp ~- ] \- ~ ~-g f 

(47) 

Lo.t(t ) is given by 

Lou,(t)= r6(t, r) dr + L 6(t, r) dr; (48) 

that is, a walker whose range is between 0 and L 
contributes that amount to the length that left the tube, 
but a walker whose range is greater than L only 
contributes L to the length that left the tube. A 
substitution of (47) into (48) gives: 

1 ( n2Dcl2t~ Lou,(t) _ 1 _ 8  ~ ~ ,exp (49) 
L n2 t=,,3,s .... L 2 f 

As explained before 1, the fraction of time that a chain 
spends free, with no crosslinks, is e-t; therefore, the 
effective time in which a sulphonated chain behaves as a 
random walker is e-~t. A replacement of t by e-~t in (49) 
leads to (40), as desired. 
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